Serveur d'exploration sur Mozart

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Estimating the contribution of strong daily export events to total pollutant export from the United States in summer

Identifieur interne : 000077 ( PascalFrancis/Corpus ); précédent : 000076; suivant : 000078

Estimating the contribution of strong daily export events to total pollutant export from the United States in summer

Auteurs : YUANYUAN FANG ; Arlene M. Fiore ; Larry W. Horowitz ; Anand Gnanadesikan ; Hiram Ii Levy ; YONGTAO HU ; Armistead G. Russell

Source :

RBID : Pascal:10-0049532

Descripteurs français

English descriptors

Abstract

[1] While the export of pollutants from the United States exhibits notable variability from day to day and is often considered to be "episodic," the contribution of strong daily export events to total export has not been quantified. We use carbon monoxide (CO) as a tracer of anthropogenic pollutants in the Model of OZone And Related Tracers (MOZART) to estimate this contribution. We first identify the major export pathway from the United States to be through the northeast boundary (24-48°N along 67.5°W and 80-67.5°W along 48°N), and then analyze 15 summers of daily CO export fluxes through this boundary. These daily CO export fluxes have a nearly Gaussian distribution with a mean of 1100 Gg CO day-1 and a standard deviation of 490 Gg CO day-1. To focus on the synoptic variability, we define a "synoptic background" export flux equal to the 15 day moving average export flux and classify strong export days according to their fluxes relative to this background. As expected from Gaussian statistics, 16% of summer days are "strong export days," classified as those days when the CO export flux exceeds the synoptic background by one standard deviation or more. Strong export days contributes 25% to the total export, a value determined by the relative standard deviation of the CO flux distribution. Regressing the anomalies of the CO export flux through the northeast U.S. boundary relative to the synoptic background on the daily anomalies in the surface pressure field (also relative to a 15 day running mean) suggests that strong daily export fluxes are correlated with passages of midlatitude cyclones over the Gulf of Saint Lawrence. The associated cyclonic circulation and Warm Conveyor Belts (WCBs) that lift surface pollutants over the northeastern United States have been shown previously to be associated with long-range transport events. Comparison with observations from the 2004 INTEX-NA field campaign confirms that our model captures the observed enhancements in CO outflow and resolves the processes associated with cyclone passages on strong export days. "Moderate export days," defined as days when the CO flux through the northeast boundary exceeds the 15 day running mean by less than one standard deviation, represent an additional 34% of summer days and 40% of total export. These days are also associated with migratory midlatitude cyclones. The remaining 35% of total export occurs on "weak export days" (50% of summer days) when high pressure anomalies occur over the Gulf of Saint Lawrence. Our findings for summer also apply to spring, when the U.S. pollutant export is typically strongest, with similar contributions to total export and associated meteorology on strong, moderate and weak export days. Although cyclone passages are the primary driver for strong daily export events, export during days without cyclone passages also makes a considerable contribution to the total export and thereby to the global pollutant budget.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0148-0227
A03   1    @0 J. geophys. res.
A05       @2 114
A06       @2 D23
A08 01  1  ENG  @1 Estimating the contribution of strong daily export events to total pollutant export from the United States in summer
A11 01  1    @1 YUANYUAN FANG
A11 02  1    @1 FIORE (Arlene M.)
A11 03  1    @1 HOROWITZ (Larry W.)
A11 04  1    @1 GNANADESIKAN (Anand)
A11 05  1    @1 LEVY (Hiram II)
A11 06  1    @1 YONGTAO HU
A11 07  1    @1 RUSSELL (Armistead G.)
A14 01      @1 Atmospheric and Oceanic Sciences Program, Princeton University @2 Princeton, New Jersey @3 USA @Z 1 aut. @Z 3 aut. @Z 4 aut.
A14 02      @1 Geophysical Fluid Dynamics Laboratory @2 Princeton, New Jersey @3 USA @Z 1 aut. @Z 2 aut. @Z 3 aut. @Z 4 aut. @Z 5 aut.
A14 03      @1 School of Civil and Environmental Engineering, Georgia Institute of Technology @2 Atlanta, Georgia @3 USA @Z 6 aut. @Z 7 aut.
A20       @2 D23302.1-D23302.15
A21       @1 2009
A23 01      @0 ENG
A43 01      @1 INIST @2 3144 @5 354000186678580150
A44       @0 0000 @1 © 2010 INIST-CNRS. All rights reserved.
A45       @0 1 p.1/4
A47 01  1    @0 10-0049532
A60       @1 P
A61       @0 A
A64 01  1    @0 Journal of geophysical research
A66 01      @0 USA
C01 01    ENG  @0 [1] While the export of pollutants from the United States exhibits notable variability from day to day and is often considered to be "episodic," the contribution of strong daily export events to total export has not been quantified. We use carbon monoxide (CO) as a tracer of anthropogenic pollutants in the Model of OZone And Related Tracers (MOZART) to estimate this contribution. We first identify the major export pathway from the United States to be through the northeast boundary (24-48°N along 67.5°W and 80-67.5°W along 48°N), and then analyze 15 summers of daily CO export fluxes through this boundary. These daily CO export fluxes have a nearly Gaussian distribution with a mean of 1100 Gg CO day-1 and a standard deviation of 490 Gg CO day-1. To focus on the synoptic variability, we define a "synoptic background" export flux equal to the 15 day moving average export flux and classify strong export days according to their fluxes relative to this background. As expected from Gaussian statistics, 16% of summer days are "strong export days," classified as those days when the CO export flux exceeds the synoptic background by one standard deviation or more. Strong export days contributes 25% to the total export, a value determined by the relative standard deviation of the CO flux distribution. Regressing the anomalies of the CO export flux through the northeast U.S. boundary relative to the synoptic background on the daily anomalies in the surface pressure field (also relative to a 15 day running mean) suggests that strong daily export fluxes are correlated with passages of midlatitude cyclones over the Gulf of Saint Lawrence. The associated cyclonic circulation and Warm Conveyor Belts (WCBs) that lift surface pollutants over the northeastern United States have been shown previously to be associated with long-range transport events. Comparison with observations from the 2004 INTEX-NA field campaign confirms that our model captures the observed enhancements in CO outflow and resolves the processes associated with cyclone passages on strong export days. "Moderate export days," defined as days when the CO flux through the northeast boundary exceeds the 15 day running mean by less than one standard deviation, represent an additional 34% of summer days and 40% of total export. These days are also associated with migratory midlatitude cyclones. The remaining 35% of total export occurs on "weak export days" (50% of summer days) when high pressure anomalies occur over the Gulf of Saint Lawrence. Our findings for summer also apply to spring, when the U.S. pollutant export is typically strongest, with similar contributions to total export and associated meteorology on strong, moderate and weak export days. Although cyclone passages are the primary driver for strong daily export events, export during days without cyclone passages also makes a considerable contribution to the total export and thereby to the global pollutant budget.
C02 01  3    @0 001E
C02 02  2    @0 001E01
C02 03  2    @0 220
C03 01  2  FRE  @0 Exportation @5 01
C03 01  2  ENG  @0 export @5 01
C03 01  2  SPA  @0 Exportación @5 01
C03 02  2  FRE  @0 Polluant @5 02
C03 02  2  ENG  @0 pollutants @5 02
C03 02  2  SPA  @0 Contaminante @5 02
C03 03  X  FRE  @0 Eté @5 03
C03 03  X  ENG  @0 Summer @5 03
C03 03  X  SPA  @0 Verano @5 03
C03 04  2  FRE  @0 Exposition @5 04
C03 04  2  ENG  @0 exhibits @5 04
C03 05  2  FRE  @0 Variabilité @5 05
C03 05  2  ENG  @0 variability @5 05
C03 06  2  FRE  @0 Monoxyde carbone @5 06
C03 06  2  ENG  @0 carbon monoxide @5 06
C03 07  X  FRE  @0 Monoxyde de carbone @2 NK @2 FX @5 07
C03 07  X  ENG  @0 Carbon monoxide @2 NK @2 FX @5 07
C03 07  X  SPA  @0 Carbono monóxido @2 NK @2 FX @5 07
C03 08  2  FRE  @0 Traceur @5 08
C03 08  2  ENG  @0 tracers @5 08
C03 08  2  SPA  @0 Trazador @5 08
C03 09  2  FRE  @0 Modèle @5 09
C03 09  2  ENG  @0 models @5 09
C03 09  2  SPA  @0 Modelo @5 09
C03 10  2  FRE  @0 Ozone @5 10
C03 10  2  ENG  @0 ozone @5 10
C03 10  2  SPA  @0 Ozono @5 10
C03 11  X  FRE  @0 Loi normale @5 11
C03 11  X  ENG  @0 Gaussian distribution @5 11
C03 11  X  SPA  @0 Curva Gauss @5 11
C03 12  2  FRE  @0 Ecart type @5 12
C03 12  2  ENG  @0 standard deviation @5 12
C03 12  2  SPA  @0 Desviación típica @5 12
C03 13  2  FRE  @0 Foyer @5 13
C03 13  2  ENG  @0 focus @5 13
C03 14  2  FRE  @0 Moyenne mobile @5 14
C03 14  2  ENG  @0 moving average @5 14
C03 15  2  FRE  @0 Statistique @5 15
C03 15  2  ENG  @0 statistics @5 15
C03 15  2  SPA  @0 Estadística @5 15
C03 16  2  FRE  @0 Anomalie @5 16
C03 16  2  ENG  @0 anomalies @5 16
C03 16  2  SPA  @0 Anomalía @5 16
C03 17  X  FRE  @0 Pression superficielle @5 17
C03 17  X  ENG  @0 Surface pressure @5 17
C03 17  X  SPA  @0 Presión superficial @5 17
C03 18  X  FRE  @0 Distribution pression @5 18
C03 18  X  ENG  @0 Pressure distribution @5 18
C03 18  X  SPA  @0 Distribución presión @5 18
C03 19  X  FRE  @0 Moyenne latitude @5 19
C03 19  X  ENG  @0 Mid latitude @5 19
C03 19  X  SPA  @0 Latitud media @5 19
C03 20  2  FRE  @0 Circulation @5 20
C03 20  2  ENG  @0 circulation @5 20
C03 21  3  FRE  @0 Transport grande distance @5 21
C03 21  3  ENG  @0 Long-range transport @5 21
C03 22  2  FRE  @0 Haute pression @5 22
C03 22  2  ENG  @0 high pressure @5 22
C03 22  2  SPA  @0 Alta presión @5 22
C03 23  2  FRE  @0 Source @5 23
C03 23  2  ENG  @0 springs @5 23
C03 23  2  SPA  @0 Fuente @5 23
C03 24  X  FRE  @0 Printemps @5 24
C03 24  X  ENG  @0 Spring(season) @5 24
C03 24  X  SPA  @0 Primavera @5 24
C03 25  2  FRE  @0 Météorologie @5 25
C03 25  2  ENG  @0 meteorology @5 25
C03 25  2  SPA  @0 Meteorología @5 25
C03 26  2  FRE  @0 Etats Unis @2 NG @5 61
C03 26  2  ENG  @0 United States @2 NG @5 61
C03 26  2  SPA  @0 Estados Unidos @2 NG @5 61
C03 27  2  FRE  @0 Golfe du Saint Laurent @2 NG @5 63
C03 27  2  ENG  @0 Gulf of Saint Lawrence @2 NG @5 63
C03 27  2  SPA  @0 Golfo del San Lorenzo @2 NG @5 63
C07 01  2  FRE  @0 Amérique du Nord
C07 01  2  ENG  @0 North America
C07 01  2  SPA  @0 America del norte
C07 02  2  FRE  @0 Océan Atlantique Nord Américain @2 NG
C07 02  2  ENG  @0 North American Atlantic @2 NG
C07 03  2  FRE  @0 Océan Atlantique Nord Ouest @2 NG
C07 03  2  ENG  @0 Northwest Atlantic @2 NG
C07 04  2  FRE  @0 Océan Atlantique Nord @2 NG
C07 04  2  ENG  @0 North Atlantic @2 NG
C07 04  2  SPA  @0 Océano Atlántico Norte @2 NG
C07 05  2  FRE  @0 Océan Atlantique @2 564
C07 05  2  ENG  @0 Atlantic Ocean @2 564
C07 05  2  SPA  @0 Océano Atlántico @2 564
N21       @1 032
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 10-0049532 INIST
ET : Estimating the contribution of strong daily export events to total pollutant export from the United States in summer
AU : YUANYUAN FANG; FIORE (Arlene M.); HOROWITZ (Larry W.); GNANADESIKAN (Anand); LEVY (Hiram II); YONGTAO HU; RUSSELL (Armistead G.)
AF : Atmospheric and Oceanic Sciences Program, Princeton University/Princeton, New Jersey/Etats-Unis (1 aut., 3 aut., 4 aut.); Geophysical Fluid Dynamics Laboratory/Princeton, New Jersey/Etats-Unis (1 aut., 2 aut., 3 aut., 4 aut., 5 aut.); School of Civil and Environmental Engineering, Georgia Institute of Technology/Atlanta, Georgia/Etats-Unis (6 aut., 7 aut.)
DT : Publication en série; Niveau analytique
SO : Journal of geophysical research; ISSN 0148-0227; Etats-Unis; Da. 2009; Vol. 114; No. D23; D23302.1-D23302.15; Bibl. 1 p.1/4
LA : Anglais
EA : [1] While the export of pollutants from the United States exhibits notable variability from day to day and is often considered to be "episodic," the contribution of strong daily export events to total export has not been quantified. We use carbon monoxide (CO) as a tracer of anthropogenic pollutants in the Model of OZone And Related Tracers (MOZART) to estimate this contribution. We first identify the major export pathway from the United States to be through the northeast boundary (24-48°N along 67.5°W and 80-67.5°W along 48°N), and then analyze 15 summers of daily CO export fluxes through this boundary. These daily CO export fluxes have a nearly Gaussian distribution with a mean of 1100 Gg CO day-1 and a standard deviation of 490 Gg CO day-1. To focus on the synoptic variability, we define a "synoptic background" export flux equal to the 15 day moving average export flux and classify strong export days according to their fluxes relative to this background. As expected from Gaussian statistics, 16% of summer days are "strong export days," classified as those days when the CO export flux exceeds the synoptic background by one standard deviation or more. Strong export days contributes 25% to the total export, a value determined by the relative standard deviation of the CO flux distribution. Regressing the anomalies of the CO export flux through the northeast U.S. boundary relative to the synoptic background on the daily anomalies in the surface pressure field (also relative to a 15 day running mean) suggests that strong daily export fluxes are correlated with passages of midlatitude cyclones over the Gulf of Saint Lawrence. The associated cyclonic circulation and Warm Conveyor Belts (WCBs) that lift surface pollutants over the northeastern United States have been shown previously to be associated with long-range transport events. Comparison with observations from the 2004 INTEX-NA field campaign confirms that our model captures the observed enhancements in CO outflow and resolves the processes associated with cyclone passages on strong export days. "Moderate export days," defined as days when the CO flux through the northeast boundary exceeds the 15 day running mean by less than one standard deviation, represent an additional 34% of summer days and 40% of total export. These days are also associated with migratory midlatitude cyclones. The remaining 35% of total export occurs on "weak export days" (50% of summer days) when high pressure anomalies occur over the Gulf of Saint Lawrence. Our findings for summer also apply to spring, when the U.S. pollutant export is typically strongest, with similar contributions to total export and associated meteorology on strong, moderate and weak export days. Although cyclone passages are the primary driver for strong daily export events, export during days without cyclone passages also makes a considerable contribution to the total export and thereby to the global pollutant budget.
CC : 001E; 001E01; 220
FD : Exportation; Polluant; Eté; Exposition; Variabilité; Monoxyde carbone; Monoxyde de carbone; Traceur; Modèle; Ozone; Loi normale; Ecart type; Foyer; Moyenne mobile; Statistique; Anomalie; Pression superficielle; Distribution pression; Moyenne latitude; Circulation; Transport grande distance; Haute pression; Source; Printemps; Météorologie; Etats Unis; Golfe du Saint Laurent
FG : Amérique du Nord; Océan Atlantique Nord Américain; Océan Atlantique Nord Ouest; Océan Atlantique Nord; Océan Atlantique
ED : export; pollutants; Summer; exhibits; variability; carbon monoxide; Carbon monoxide; tracers; models; ozone; Gaussian distribution; standard deviation; focus; moving average; statistics; anomalies; Surface pressure; Pressure distribution; Mid latitude; circulation; Long-range transport; high pressure; springs; Spring(season); meteorology; United States; Gulf of Saint Lawrence
EG : North America; North American Atlantic; Northwest Atlantic; North Atlantic; Atlantic Ocean
SD : Exportación; Contaminante; Verano; Carbono monóxido; Trazador; Modelo; Ozono; Curva Gauss; Desviación típica; Estadística; Anomalía; Presión superficial; Distribución presión; Latitud media; Alta presión; Fuente; Primavera; Meteorología; Estados Unidos; Golfo del San Lorenzo
LO : INIST-3144.354000186678580150
ID : 10-0049532

Links to Exploration step

Pascal:10-0049532

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Estimating the contribution of strong daily export events to total pollutant export from the United States in summer</title>
<author>
<name sortKey="Yuanyuan Fang" sort="Yuanyuan Fang" uniqKey="Yuanyuan Fang" last="Yuanyuan Fang">YUANYUAN FANG</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Atmospheric and Oceanic Sciences Program, Princeton University</s1>
<s2>Princeton, New Jersey</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Geophysical Fluid Dynamics Laboratory</s1>
<s2>Princeton, New Jersey</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Fiore, Arlene M" sort="Fiore, Arlene M" uniqKey="Fiore A" first="Arlene M." last="Fiore">Arlene M. Fiore</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Geophysical Fluid Dynamics Laboratory</s1>
<s2>Princeton, New Jersey</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Horowitz, Larry W" sort="Horowitz, Larry W" uniqKey="Horowitz L" first="Larry W." last="Horowitz">Larry W. Horowitz</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Atmospheric and Oceanic Sciences Program, Princeton University</s1>
<s2>Princeton, New Jersey</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Geophysical Fluid Dynamics Laboratory</s1>
<s2>Princeton, New Jersey</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Gnanadesikan, Anand" sort="Gnanadesikan, Anand" uniqKey="Gnanadesikan A" first="Anand" last="Gnanadesikan">Anand Gnanadesikan</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Atmospheric and Oceanic Sciences Program, Princeton University</s1>
<s2>Princeton, New Jersey</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Geophysical Fluid Dynamics Laboratory</s1>
<s2>Princeton, New Jersey</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Levy, Hiram Ii" sort="Levy, Hiram Ii" uniqKey="Levy H" first="Hiram Ii" last="Levy">Hiram Ii Levy</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Geophysical Fluid Dynamics Laboratory</s1>
<s2>Princeton, New Jersey</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Yongtao Hu" sort="Yongtao Hu" uniqKey="Yongtao Hu" last="Yongtao Hu">YONGTAO HU</name>
<affiliation>
<inist:fA14 i1="03">
<s1>School of Civil and Environmental Engineering, Georgia Institute of Technology</s1>
<s2>Atlanta, Georgia</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Russell, Armistead G" sort="Russell, Armistead G" uniqKey="Russell A" first="Armistead G." last="Russell">Armistead G. Russell</name>
<affiliation>
<inist:fA14 i1="03">
<s1>School of Civil and Environmental Engineering, Georgia Institute of Technology</s1>
<s2>Atlanta, Georgia</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">10-0049532</idno>
<date when="2009">2009</date>
<idno type="stanalyst">PASCAL 10-0049532 INIST</idno>
<idno type="RBID">Pascal:10-0049532</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000077</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Estimating the contribution of strong daily export events to total pollutant export from the United States in summer</title>
<author>
<name sortKey="Yuanyuan Fang" sort="Yuanyuan Fang" uniqKey="Yuanyuan Fang" last="Yuanyuan Fang">YUANYUAN FANG</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Atmospheric and Oceanic Sciences Program, Princeton University</s1>
<s2>Princeton, New Jersey</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Geophysical Fluid Dynamics Laboratory</s1>
<s2>Princeton, New Jersey</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Fiore, Arlene M" sort="Fiore, Arlene M" uniqKey="Fiore A" first="Arlene M." last="Fiore">Arlene M. Fiore</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Geophysical Fluid Dynamics Laboratory</s1>
<s2>Princeton, New Jersey</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Horowitz, Larry W" sort="Horowitz, Larry W" uniqKey="Horowitz L" first="Larry W." last="Horowitz">Larry W. Horowitz</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Atmospheric and Oceanic Sciences Program, Princeton University</s1>
<s2>Princeton, New Jersey</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Geophysical Fluid Dynamics Laboratory</s1>
<s2>Princeton, New Jersey</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Gnanadesikan, Anand" sort="Gnanadesikan, Anand" uniqKey="Gnanadesikan A" first="Anand" last="Gnanadesikan">Anand Gnanadesikan</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Atmospheric and Oceanic Sciences Program, Princeton University</s1>
<s2>Princeton, New Jersey</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Geophysical Fluid Dynamics Laboratory</s1>
<s2>Princeton, New Jersey</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Levy, Hiram Ii" sort="Levy, Hiram Ii" uniqKey="Levy H" first="Hiram Ii" last="Levy">Hiram Ii Levy</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Geophysical Fluid Dynamics Laboratory</s1>
<s2>Princeton, New Jersey</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Yongtao Hu" sort="Yongtao Hu" uniqKey="Yongtao Hu" last="Yongtao Hu">YONGTAO HU</name>
<affiliation>
<inist:fA14 i1="03">
<s1>School of Civil and Environmental Engineering, Georgia Institute of Technology</s1>
<s2>Atlanta, Georgia</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Russell, Armistead G" sort="Russell, Armistead G" uniqKey="Russell A" first="Armistead G." last="Russell">Armistead G. Russell</name>
<affiliation>
<inist:fA14 i1="03">
<s1>School of Civil and Environmental Engineering, Georgia Institute of Technology</s1>
<s2>Atlanta, Georgia</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of geophysical research</title>
<title level="j" type="abbreviated">J. geophys. res.</title>
<idno type="ISSN">0148-0227</idno>
<imprint>
<date when="2009">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of geophysical research</title>
<title level="j" type="abbreviated">J. geophys. res.</title>
<idno type="ISSN">0148-0227</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Carbon monoxide</term>
<term>Gaussian distribution</term>
<term>Gulf of Saint Lawrence</term>
<term>Long-range transport</term>
<term>Mid latitude</term>
<term>Pressure distribution</term>
<term>Spring(season)</term>
<term>Summer</term>
<term>Surface pressure</term>
<term>United States</term>
<term>anomalies</term>
<term>carbon monoxide</term>
<term>circulation</term>
<term>exhibits</term>
<term>export</term>
<term>focus</term>
<term>high pressure</term>
<term>meteorology</term>
<term>models</term>
<term>moving average</term>
<term>ozone</term>
<term>pollutants</term>
<term>springs</term>
<term>standard deviation</term>
<term>statistics</term>
<term>tracers</term>
<term>variability</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Exportation</term>
<term>Polluant</term>
<term>Eté</term>
<term>Exposition</term>
<term>Variabilité</term>
<term>Monoxyde carbone</term>
<term>Monoxyde de carbone</term>
<term>Traceur</term>
<term>Modèle</term>
<term>Ozone</term>
<term>Loi normale</term>
<term>Ecart type</term>
<term>Foyer</term>
<term>Moyenne mobile</term>
<term>Statistique</term>
<term>Anomalie</term>
<term>Pression superficielle</term>
<term>Distribution pression</term>
<term>Moyenne latitude</term>
<term>Circulation</term>
<term>Transport grande distance</term>
<term>Haute pression</term>
<term>Source</term>
<term>Printemps</term>
<term>Météorologie</term>
<term>Etats Unis</term>
<term>Golfe du Saint Laurent</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">[1] While the export of pollutants from the United States exhibits notable variability from day to day and is often considered to be "episodic," the contribution of strong daily export events to total export has not been quantified. We use carbon monoxide (CO) as a tracer of anthropogenic pollutants in the Model of OZone And Related Tracers (MOZART) to estimate this contribution. We first identify the major export pathway from the United States to be through the northeast boundary (24-48°N along 67.5°W and 80-67.5°W along 48°N), and then analyze 15 summers of daily CO export fluxes through this boundary. These daily CO export fluxes have a nearly Gaussian distribution with a mean of 1100 Gg CO day
<sup>-1</sup>
and a standard deviation of 490 Gg CO day
<sup>-1</sup>
. To focus on the synoptic variability, we define a "synoptic background" export flux equal to the 15 day moving average export flux and classify strong export days according to their fluxes relative to this background. As expected from Gaussian statistics, 16% of summer days are "strong export days," classified as those days when the CO export flux exceeds the synoptic background by one standard deviation or more. Strong export days contributes 25% to the total export, a value determined by the relative standard deviation of the CO flux distribution. Regressing the anomalies of the CO export flux through the northeast U.S. boundary relative to the synoptic background on the daily anomalies in the surface pressure field (also relative to a 15 day running mean) suggests that strong daily export fluxes are correlated with passages of midlatitude cyclones over the Gulf of Saint Lawrence. The associated cyclonic circulation and Warm Conveyor Belts (WCBs) that lift surface pollutants over the northeastern United States have been shown previously to be associated with long-range transport events. Comparison with observations from the 2004 INTEX-NA field campaign confirms that our model captures the observed enhancements in CO outflow and resolves the processes associated with cyclone passages on strong export days. "Moderate export days," defined as days when the CO flux through the northeast boundary exceeds the 15 day running mean by less than one standard deviation, represent an additional 34% of summer days and 40% of total export. These days are also associated with migratory midlatitude cyclones. The remaining 35% of total export occurs on "weak export days" (50% of summer days) when high pressure anomalies occur over the Gulf of Saint Lawrence. Our findings for summer also apply to spring, when the U.S. pollutant export is typically strongest, with similar contributions to total export and associated meteorology on strong, moderate and weak export days. Although cyclone passages are the primary driver for strong daily export events, export during days without cyclone passages also makes a considerable contribution to the total export and thereby to the global pollutant budget.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0148-0227</s0>
</fA01>
<fA03 i2="1">
<s0>J. geophys. res.</s0>
</fA03>
<fA05>
<s2>114</s2>
</fA05>
<fA06>
<s2>D23</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Estimating the contribution of strong daily export events to total pollutant export from the United States in summer</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>YUANYUAN FANG</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>FIORE (Arlene M.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>HOROWITZ (Larry W.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>GNANADESIKAN (Anand)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>LEVY (Hiram II)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>YONGTAO HU</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>RUSSELL (Armistead G.)</s1>
</fA11>
<fA14 i1="01">
<s1>Atmospheric and Oceanic Sciences Program, Princeton University</s1>
<s2>Princeton, New Jersey</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Geophysical Fluid Dynamics Laboratory</s1>
<s2>Princeton, New Jersey</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>School of Civil and Environmental Engineering, Georgia Institute of Technology</s1>
<s2>Atlanta, Georgia</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA20>
<s2>D23302.1-D23302.15</s2>
</fA20>
<fA21>
<s1>2009</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>3144</s2>
<s5>354000186678580150</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2010 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>1 p.1/4</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>10-0049532</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of geophysical research</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>[1] While the export of pollutants from the United States exhibits notable variability from day to day and is often considered to be "episodic," the contribution of strong daily export events to total export has not been quantified. We use carbon monoxide (CO) as a tracer of anthropogenic pollutants in the Model of OZone And Related Tracers (MOZART) to estimate this contribution. We first identify the major export pathway from the United States to be through the northeast boundary (24-48°N along 67.5°W and 80-67.5°W along 48°N), and then analyze 15 summers of daily CO export fluxes through this boundary. These daily CO export fluxes have a nearly Gaussian distribution with a mean of 1100 Gg CO day
<sup>-1</sup>
and a standard deviation of 490 Gg CO day
<sup>-1</sup>
. To focus on the synoptic variability, we define a "synoptic background" export flux equal to the 15 day moving average export flux and classify strong export days according to their fluxes relative to this background. As expected from Gaussian statistics, 16% of summer days are "strong export days," classified as those days when the CO export flux exceeds the synoptic background by one standard deviation or more. Strong export days contributes 25% to the total export, a value determined by the relative standard deviation of the CO flux distribution. Regressing the anomalies of the CO export flux through the northeast U.S. boundary relative to the synoptic background on the daily anomalies in the surface pressure field (also relative to a 15 day running mean) suggests that strong daily export fluxes are correlated with passages of midlatitude cyclones over the Gulf of Saint Lawrence. The associated cyclonic circulation and Warm Conveyor Belts (WCBs) that lift surface pollutants over the northeastern United States have been shown previously to be associated with long-range transport events. Comparison with observations from the 2004 INTEX-NA field campaign confirms that our model captures the observed enhancements in CO outflow and resolves the processes associated with cyclone passages on strong export days. "Moderate export days," defined as days when the CO flux through the northeast boundary exceeds the 15 day running mean by less than one standard deviation, represent an additional 34% of summer days and 40% of total export. These days are also associated with migratory midlatitude cyclones. The remaining 35% of total export occurs on "weak export days" (50% of summer days) when high pressure anomalies occur over the Gulf of Saint Lawrence. Our findings for summer also apply to spring, when the U.S. pollutant export is typically strongest, with similar contributions to total export and associated meteorology on strong, moderate and weak export days. Although cyclone passages are the primary driver for strong daily export events, export during days without cyclone passages also makes a considerable contribution to the total export and thereby to the global pollutant budget.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001E</s0>
</fC02>
<fC02 i1="02" i2="2">
<s0>001E01</s0>
</fC02>
<fC02 i1="03" i2="2">
<s0>220</s0>
</fC02>
<fC03 i1="01" i2="2" l="FRE">
<s0>Exportation</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="2" l="ENG">
<s0>export</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="2" l="SPA">
<s0>Exportación</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="2" l="FRE">
<s0>Polluant</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="2" l="ENG">
<s0>pollutants</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="2" l="SPA">
<s0>Contaminante</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Eté</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Summer</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Verano</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="2" l="FRE">
<s0>Exposition</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="2" l="ENG">
<s0>exhibits</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="2" l="FRE">
<s0>Variabilité</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="2" l="ENG">
<s0>variability</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="2" l="FRE">
<s0>Monoxyde carbone</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="2" l="ENG">
<s0>carbon monoxide</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Monoxyde de carbone</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Carbon monoxide</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Carbono monóxido</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="2" l="FRE">
<s0>Traceur</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="2" l="ENG">
<s0>tracers</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="2" l="SPA">
<s0>Trazador</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="2" l="FRE">
<s0>Modèle</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="2" l="ENG">
<s0>models</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="2" l="SPA">
<s0>Modelo</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="2" l="FRE">
<s0>Ozone</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="2" l="ENG">
<s0>ozone</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="2" l="SPA">
<s0>Ozono</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Loi normale</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Gaussian distribution</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Curva Gauss</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="2" l="FRE">
<s0>Ecart type</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="2" l="ENG">
<s0>standard deviation</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="2" l="SPA">
<s0>Desviación típica</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="2" l="FRE">
<s0>Foyer</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="2" l="ENG">
<s0>focus</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="2" l="FRE">
<s0>Moyenne mobile</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="2" l="ENG">
<s0>moving average</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="2" l="FRE">
<s0>Statistique</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="2" l="ENG">
<s0>statistics</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="2" l="SPA">
<s0>Estadística</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="2" l="FRE">
<s0>Anomalie</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="2" l="ENG">
<s0>anomalies</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="2" l="SPA">
<s0>Anomalía</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Pression superficielle</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Surface pressure</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Presión superficial</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Distribution pression</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Pressure distribution</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Distribución presión</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Moyenne latitude</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Mid latitude</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Latitud media</s0>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="2" l="FRE">
<s0>Circulation</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="2" l="ENG">
<s0>circulation</s0>
<s5>20</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Transport grande distance</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Long-range transport</s0>
<s5>21</s5>
</fC03>
<fC03 i1="22" i2="2" l="FRE">
<s0>Haute pression</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="2" l="ENG">
<s0>high pressure</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="2" l="SPA">
<s0>Alta presión</s0>
<s5>22</s5>
</fC03>
<fC03 i1="23" i2="2" l="FRE">
<s0>Source</s0>
<s5>23</s5>
</fC03>
<fC03 i1="23" i2="2" l="ENG">
<s0>springs</s0>
<s5>23</s5>
</fC03>
<fC03 i1="23" i2="2" l="SPA">
<s0>Fuente</s0>
<s5>23</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Printemps</s0>
<s5>24</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>Spring(season)</s0>
<s5>24</s5>
</fC03>
<fC03 i1="24" i2="X" l="SPA">
<s0>Primavera</s0>
<s5>24</s5>
</fC03>
<fC03 i1="25" i2="2" l="FRE">
<s0>Météorologie</s0>
<s5>25</s5>
</fC03>
<fC03 i1="25" i2="2" l="ENG">
<s0>meteorology</s0>
<s5>25</s5>
</fC03>
<fC03 i1="25" i2="2" l="SPA">
<s0>Meteorología</s0>
<s5>25</s5>
</fC03>
<fC03 i1="26" i2="2" l="FRE">
<s0>Etats Unis</s0>
<s2>NG</s2>
<s5>61</s5>
</fC03>
<fC03 i1="26" i2="2" l="ENG">
<s0>United States</s0>
<s2>NG</s2>
<s5>61</s5>
</fC03>
<fC03 i1="26" i2="2" l="SPA">
<s0>Estados Unidos</s0>
<s2>NG</s2>
<s5>61</s5>
</fC03>
<fC03 i1="27" i2="2" l="FRE">
<s0>Golfe du Saint Laurent</s0>
<s2>NG</s2>
<s5>63</s5>
</fC03>
<fC03 i1="27" i2="2" l="ENG">
<s0>Gulf of Saint Lawrence</s0>
<s2>NG</s2>
<s5>63</s5>
</fC03>
<fC03 i1="27" i2="2" l="SPA">
<s0>Golfo del San Lorenzo</s0>
<s2>NG</s2>
<s5>63</s5>
</fC03>
<fC07 i1="01" i2="2" l="FRE">
<s0>Amérique du Nord</s0>
</fC07>
<fC07 i1="01" i2="2" l="ENG">
<s0>North America</s0>
</fC07>
<fC07 i1="01" i2="2" l="SPA">
<s0>America del norte</s0>
</fC07>
<fC07 i1="02" i2="2" l="FRE">
<s0>Océan Atlantique Nord Américain</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="02" i2="2" l="ENG">
<s0>North American Atlantic</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="03" i2="2" l="FRE">
<s0>Océan Atlantique Nord Ouest</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="03" i2="2" l="ENG">
<s0>Northwest Atlantic</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="04" i2="2" l="FRE">
<s0>Océan Atlantique Nord</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="04" i2="2" l="ENG">
<s0>North Atlantic</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="04" i2="2" l="SPA">
<s0>Océano Atlántico Norte</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="05" i2="2" l="FRE">
<s0>Océan Atlantique</s0>
<s2>564</s2>
</fC07>
<fC07 i1="05" i2="2" l="ENG">
<s0>Atlantic Ocean</s0>
<s2>564</s2>
</fC07>
<fC07 i1="05" i2="2" l="SPA">
<s0>Océano Atlántico</s0>
<s2>564</s2>
</fC07>
<fN21>
<s1>032</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 10-0049532 INIST</NO>
<ET>Estimating the contribution of strong daily export events to total pollutant export from the United States in summer</ET>
<AU>YUANYUAN FANG; FIORE (Arlene M.); HOROWITZ (Larry W.); GNANADESIKAN (Anand); LEVY (Hiram II); YONGTAO HU; RUSSELL (Armistead G.)</AU>
<AF>Atmospheric and Oceanic Sciences Program, Princeton University/Princeton, New Jersey/Etats-Unis (1 aut., 3 aut., 4 aut.); Geophysical Fluid Dynamics Laboratory/Princeton, New Jersey/Etats-Unis (1 aut., 2 aut., 3 aut., 4 aut., 5 aut.); School of Civil and Environmental Engineering, Georgia Institute of Technology/Atlanta, Georgia/Etats-Unis (6 aut., 7 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Journal of geophysical research; ISSN 0148-0227; Etats-Unis; Da. 2009; Vol. 114; No. D23; D23302.1-D23302.15; Bibl. 1 p.1/4</SO>
<LA>Anglais</LA>
<EA>[1] While the export of pollutants from the United States exhibits notable variability from day to day and is often considered to be "episodic," the contribution of strong daily export events to total export has not been quantified. We use carbon monoxide (CO) as a tracer of anthropogenic pollutants in the Model of OZone And Related Tracers (MOZART) to estimate this contribution. We first identify the major export pathway from the United States to be through the northeast boundary (24-48°N along 67.5°W and 80-67.5°W along 48°N), and then analyze 15 summers of daily CO export fluxes through this boundary. These daily CO export fluxes have a nearly Gaussian distribution with a mean of 1100 Gg CO day
<sup>-1</sup>
and a standard deviation of 490 Gg CO day
<sup>-1</sup>
. To focus on the synoptic variability, we define a "synoptic background" export flux equal to the 15 day moving average export flux and classify strong export days according to their fluxes relative to this background. As expected from Gaussian statistics, 16% of summer days are "strong export days," classified as those days when the CO export flux exceeds the synoptic background by one standard deviation or more. Strong export days contributes 25% to the total export, a value determined by the relative standard deviation of the CO flux distribution. Regressing the anomalies of the CO export flux through the northeast U.S. boundary relative to the synoptic background on the daily anomalies in the surface pressure field (also relative to a 15 day running mean) suggests that strong daily export fluxes are correlated with passages of midlatitude cyclones over the Gulf of Saint Lawrence. The associated cyclonic circulation and Warm Conveyor Belts (WCBs) that lift surface pollutants over the northeastern United States have been shown previously to be associated with long-range transport events. Comparison with observations from the 2004 INTEX-NA field campaign confirms that our model captures the observed enhancements in CO outflow and resolves the processes associated with cyclone passages on strong export days. "Moderate export days," defined as days when the CO flux through the northeast boundary exceeds the 15 day running mean by less than one standard deviation, represent an additional 34% of summer days and 40% of total export. These days are also associated with migratory midlatitude cyclones. The remaining 35% of total export occurs on "weak export days" (50% of summer days) when high pressure anomalies occur over the Gulf of Saint Lawrence. Our findings for summer also apply to spring, when the U.S. pollutant export is typically strongest, with similar contributions to total export and associated meteorology on strong, moderate and weak export days. Although cyclone passages are the primary driver for strong daily export events, export during days without cyclone passages also makes a considerable contribution to the total export and thereby to the global pollutant budget.</EA>
<CC>001E; 001E01; 220</CC>
<FD>Exportation; Polluant; Eté; Exposition; Variabilité; Monoxyde carbone; Monoxyde de carbone; Traceur; Modèle; Ozone; Loi normale; Ecart type; Foyer; Moyenne mobile; Statistique; Anomalie; Pression superficielle; Distribution pression; Moyenne latitude; Circulation; Transport grande distance; Haute pression; Source; Printemps; Météorologie; Etats Unis; Golfe du Saint Laurent</FD>
<FG>Amérique du Nord; Océan Atlantique Nord Américain; Océan Atlantique Nord Ouest; Océan Atlantique Nord; Océan Atlantique</FG>
<ED>export; pollutants; Summer; exhibits; variability; carbon monoxide; Carbon monoxide; tracers; models; ozone; Gaussian distribution; standard deviation; focus; moving average; statistics; anomalies; Surface pressure; Pressure distribution; Mid latitude; circulation; Long-range transport; high pressure; springs; Spring(season); meteorology; United States; Gulf of Saint Lawrence</ED>
<EG>North America; North American Atlantic; Northwest Atlantic; North Atlantic; Atlantic Ocean</EG>
<SD>Exportación; Contaminante; Verano; Carbono monóxido; Trazador; Modelo; Ozono; Curva Gauss; Desviación típica; Estadística; Anomalía; Presión superficial; Distribución presión; Latitud media; Alta presión; Fuente; Primavera; Meteorología; Estados Unidos; Golfo del San Lorenzo</SD>
<LO>INIST-3144.354000186678580150</LO>
<ID>10-0049532</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/explor/MozartV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000077 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000077 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Musique
   |area=    MozartV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:10-0049532
   |texte=   Estimating the contribution of strong daily export events to total pollutant export from the United States in summer
}}

Wicri

This area was generated with Dilib version V0.6.20.
Data generation: Sun Apr 10 15:06:14 2016. Site generation: Tue Feb 7 15:40:35 2023